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Abstract

In this article we highlight some interesting facts about Bayesian variable selection methods

for linear regression models in settings where the design matrix exhibits strong collinearity. We

first demonstrate via real data analysis and simulation studies that summaries of the posterior

distribution based on marginal and joint distributions may give conflicting results for assessing

the importance of strongly correlated covariates. The natural question is which one should be

used in practice. The simulation studies suggest that summary statistics that evaluate the im-

portance of correlated covariates jointly are more appropriate, and some priors may be more

adversely affected in such a setting. To obtain a better understanding behind the phenomenon

we study some toy examples with Zellner’s g-prior. The results show that strong collinearity

may lead to a multimodal posterior distribution over models, in which joint summaries are more

robust than marginal summaries. Thus we recommend a routine examination of the correlation

matrix and calculation of the joint inclusion probabilities for correlated covariates, in addition to

marginal inclusion probabilities, for assessing the importance of covariates in Bayesian variable

selection.

Key Words : Bayesian model averaging; Linear regression; Marginal inclusion probability; Markov

chain Monte Carlo; Median probability model; Multimodality; Zellner’s g-prior.

1 Introduction

In the Bayesian approach to variable selection in linear regression, all models are embedded in

a hierarchical mixture model, with mixture components being models with different subsets of
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covariates. We first present a brief overview of Bayesian variable selection. Let Y = (Y1, . . . Yn)
′

denote the vector of response variables, and let x1,x2, . . . ,xp denote the p covariates. Models

corresponding to different subsets of covariates may be represented by the vector γ = (γ1, . . . γp)
′,

such that γj = 1 when xj is included in the model and γj = 0 otherwise. Let Γ denote the

model space of 2p possible models and pγ =
∑p

j=1 γj denote the number of covariates in model γ,

excluding the intercept. The linear regression model is

Y | β0,βγ , φ,γ ∼ N(1β0 +Xγβγ , In/φ), (1)

where 1 is an n × 1 vector of ones, β0 is the intercept, Xγ is the n × pγ design matrix and βγ is

the pγ × 1 vector of regression coefficients under model γ, φ is the reciprocal of the error variance,

and In is an n × n identity matrix. The intercept is assumed to be included in every model. The

models in (1) are assigned a prior distribution p(γ) and the vector of parameters under each model

γ is assigned a prior distribution p(θγ | γ), where θγ = (β0,βγ , φ). The posterior probability of

any model is obtained using Bayes’ rule as:

p(γ | Y) =
p(Y | γ)p(γ)

∑

γ∈Γ p(Y | γ)p(γ) , (2)

where p(Y | γ) =
∫

p(Y | θγ ,γ)p(θγ | γ)dθγ is the marginal likelihood of Y under model γ.

We will consider scenarios when the marginal likelihood may or may not be available in closed

form. For model selection, a natural choice would be the highest probability model (HPM). This

model is theoretically optimal for selecting the “true” model under a 0 − 1 loss function using

decision-theoretic arguments.

When p is larger than 25− 30 the posterior probabilities in (2) are not available in closed form

for general design matrices due to computational limitations, irrespective of whether the marginal

likelihoods can be calculated in closed form or not. Generally one resorts to Markov chain Monte

Carlo (MCMC) or other stochastic sampling based methods to sample models. The MCMC sample

size is typically far smaller than the dimension (2p) of the model space, when p is large. As a result

Monte Carlo estimates of posterior probabilities of individual models can be unreliable, which
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makes accurate estimation of the HPM a challenging task. Moreover, for large model spaces the

HPM may have a very small posterior probability, so it is not clear if variable selection should be

based on the HPM alone as opposed to combining the information across models. Thus variable

selection is often performed with the marginal posterior inclusion probabilities, for which more

reliable estimates are available from the MCMC output. The marginal inclusion probability for the

jth covariate is:

p(γj = 1 | Y) =
∑

γ∈Γ:γj=1

p(γ | Y).

The use of these can be further motivated by the median probability model (MPM) of Barbieri and

Berger (2004). The MPM includes all variables whose posterior marginal inclusion probabilities

are greater than or equal to 0.5. Instead of selecting a single best model another option is to

consider a weighted average of quantities of interest over all models with weights being the posterior

probabilities of models. This is known as Bayesian model averaging (BMA) and it is optimal for

predictions under a squared error loss function. However, sometimes from a practical perspective

a single model may need to be chosen for future use. In such a situation the MPM is the optimal

predictive model under a squared error loss function under certain conditions (Barbieri and Berger,

2004).

It is known that strong collinearity in the design matrix could make the variance of the ordi-

nary least squares estimates unusually high. As a result the standard t-test statistics may all be

insignificant in spite of the corresponding covariates being associated with the response variable.

In this article we study a Bayesian analogue of this phenomenon. Note that our goal is not to

raise concerns about Bayesian variable selection methods, rather we describe in what ways they are

affected by collinearity and how to address such problems in a straightforward manner. In Section

2 we use real data analysis to demonstrate that marginal and joint summaries of the posterior

distribution over models may provide conflicting conclusions about the importance of covariates in

a high collinearity situation. In Section 3 we illustrate via simulation studies that joint summaries

are more likely to be correct than marginal summaries under collinearity. Further, independent

normal priors and their scale mixtures generally perform better than Zellner’s g-prior (Zellner,

1986) and its mixtures in this context. In Section 4 we provide some theoretical insight into the
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problem using the g-prior for the parameters under each model and a discrete uniform prior for the

model space. Our results show that collinearity leads to a multimodal posterior distribution which

could lead to incorrect assessment of the importance of variables when using marginal inclusion

probabilities. A simple solution is to use the joint inclusion probabilities (and joint Bayes factors)

that still provide accurate results. In Section 5 we conclude with some suggestions to cope with

the problem of collinearity in Bayesian variable selection.

2 Biscuit Dough Data

To motivate the problem studied in this article, we begin with an analysis of the biscuit dough

dataset, available as cookie in the R package ppls (Kraemer and Boulesteix, 2012). The dataset was

obtained from an experiment that used near-infrared (NIR) spectroscopy to analyze the composition

of biscuit dough pieces. An NIR reflectance spectrum for each dough is a continuous curve measured

at many equally spaced wavelengths. Brown et al. (2001) omitted the first 140 and last 49 of the

available 700 wavelengths because these contained small information. For our analysis we choose

the wavelengths 191 − 205 to have an enumerable model space with p = 15 covariates with high

pairwise correlations (around 0.999) among all of them, and the percentage of fat as the response

variable. An enumerable model space ensures that there is no ambiguity in the results due to

approximation. We use the training sample of size 39 in ppls for estimation, and the test set of

size 31 for prediction.

We use a discrete uniform prior for the model space which assigns equal probability to each of

the 215 models and non-informative priors for the intercept β0 and precision parameter φ, given by

p(β0, φ) ∝ 1/φ. For the model specific regression coefficients βγ , we consider i) the multivariate

normal g-prior (Zellner, 1986) with g = n, ii) the multivariate Zellner-Siow (Zellner and Siow,

1980) Cauchy prior, iii) independent normal priors, and iv) independent t priors with 4 degrees of

freedom. For the independent priors we use the same formulation as Ghosh and Clyde (2011), and

for the independent normal priors we choose the same hyperparameters. For the Zellner-Siow prior,

marginal likelihoods are approximated by a Laplace approximation for a one-dimensional integral

over g, see for example Liang et al. (2008) for more details. Marginal likelihoods for independent
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t priors involve higher dimensional integrals that are not available in closed form, so we use the

orthogonal data augmentation (ODA) MCMC sampler of Ghosh and Clyde (2011). The posterior

computation for the g-priors was done by enumerating the model space with the BAS algorithm

(Clyde et al., 2011). For the independent t priors, we run the MCMC sampler for 100,000 iterations

after a burn-in of 25,000 samples.

For every prior the posterior marginal inclusion probability for each covariate is less than 0.5.

The marginal Bayes factor for γj = 1 vs. γj = 0 is the ratio of the posterior odds to the prior

odds,
p(γj=1|Y)/p(γj=0|Y)

p(γj=1)/p(γj=0) , for j = 1, . . . , p. Because p(γj = 1|Y) < 0.5 the posterior odds are less

than 1, and the prior odds are equal to 1 under an uniform prior, hence the marginal Bayes factors

are less than 1. Here the MPM is the null model with only an intercept, and its prediction mean

squared error (MSE) is 3.945. As all 15 covariates are correlated we next calculate the Bayes factor

BF(HA : H0), where H0 is the model with only the intercept and HA denotes its complement. The

Bayes factors are i) 114, ii) 69, iii) 11,073, and iv) 6,425,129, for the i) g-prior, ii) Zellner-Siow prior,

iii) independent normal priors, and iv) independent t priors. The Bayes factors are different (in

magnitude) under different priors, but they unanimously provide strong evidence against H0. This

suggests that it could be worthwhile to consider a model with at least one covariate. Because all the

covariates are correlated with each other, the full model is worth an investigation. The MSEs for

the full model under the g-priors are 4.55 and 3.98, and are 2.00 and 1.98 for the independent priors.

We also look at predictions using the highest probability model (HPM) under each prior. For all

priors except the independent t, this is the model with covariate 13 only. For the independent

t prior, the HPM includes covariates 1,4,9,12,14. For this prior, the marginal likelihoods are not

known exactly making the HPM more difficult to estimate. The MSEs for the HPM under both

variants of the g-priors are 2.03, and are 2.03 and 2.01 for the independent priors.

This example shows three main findings. First, marginal and joint summaries for covariates

may differ widely when dealing with correlated covariates. Second, the predictive performance of

independent priors is more robust to the choice of the model than g-priors under collinearity. For

a given model γ, the posterior mean of the vector of regression coefficients, βγ , under the g-prior

(as specified in equation (3) in Section 4) is g
1+g β̂γ , where β̂γ is the ordinary least squares (OLS)
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estimate of βγ (Liang et al., 2008; Ghosh and Reiter, 2013). It is well-known that OLS estimates

can be unstable due to high variance under collinearity, so it is not surprising that the g-prior

inherits this property. The corresponding estimate under the independent normal priors is a ridge

regression estimate (Ghosh and Clyde, 2011), which is known to be more stable under collinearity.

Third, under collinearity, the HPM could provide better prediction than the MPM. Note that a

different choice of wavelengths as covariates may not lead to selection of the null model as the

MPM, but our goal is to illustrate that this phenomenon can happen in practice. In the following

two Sections we try to understand the problem better by using simulation studies and theoretical

toy examples.

3 Simulation Studies

Our goal is to compare the performance of marginal and joint summaries of the posterior distribu-

tion for different priors under collinearity. We consider the four priors used for the real dataset in

the previous Section. The marginal summaries are evaluated via the MPM and the joint summaries

using Bayes factors. It is of interest to evaluate whether the covariates in the “true” model can be

identified by the different priors and/or estimates. We agree with the Associate Editor that a model

cannot be completely “true”, however, we think like many authors that studying the performance

of different priors and/or estimates under a “true” model may give us insight about their behavior.

From now on by important covariates we would refer to covariates with nonzero regression coeffi-

cients in the “true” model. One could also define “importance” in terms of predictive ability of the

model, and we comment on these issues in more details in the Discussion Section.

3.1 Important Correlated Covariates

We take n = 50, p = 10, and q = 2, 3, 4, where q is the number of correlated covariates. We sample

a vector of n standard normal variables, say z, and then generate each of the q correlated covariates

by adding another vector of n independent normal variables with mean 0 and standard deviation

0.05 to z. This results in pairwise correlations of about 0.997 among the correlated covariates. The

remaining (p− q) covariates are generated independently as N(0, 1) variables. We set the intercept

6



and the regression coefficients for the correlated covariates equal to one, and all other regression

coefficients equal to zero. The response variable is generated according to model (1) with φ = 1/4

and the procedure is repeated to generate 100 datasets. For the independent t priors the MCMC

sampler is run for 10,000 iterations and the first 1,000 are discarded as burn-in. For other priors

all 210 = 1, 024 models are enumerated.

If a covariate included in the “true” model is not selected by the MPM, it is considered a false

negative. If a noise variable is selected by the MPM, that leads to a false positive. It could be

argued that as long as the MPM includes at least one of the correlated covariates associated with

the response variable, the predictive performance of the model will not be adversely affected. Thus

we also consider the cases when the MPM drops the entire group of “true” correlated covariates,

when p(γj = 1 | Y) < 0.5 for all q correlated covariates. Results are summarized in Table 1 in

terms of four quantities, of which the first three measure the performance of the MPM. They are

i) FN: proportion of false negatives, ii) FP: proportion of false positives, iii) Null: proportion of

datasets in which the MPM discards all “true” correlated covariates simultaneously, and iv) BF:

proportion of datasets in which the Bayes factor BF(HA : H0) ≥ 10, where H0 is the hypothesis

that γj = 0 for all the q correlated covariates and HA denotes its complement.

Table 1 shows that the proportion of false negatives is much higher for q > 2 than q = 2. With

q = 4 this rate is higher than 80% for the g-priors and higher than 10% for the independent priors.

The false positive rate is generally low and the performance is similar across all priors. For q = 2

none of the priors drop all correlated covariates together. However, for q = 3, 4, the g-priors show

this behavior in about 40-50% cases. This problem may be tackled by considering joint inclusion

probabilities for correlated covariates (Barbieri and Berger, 2004; Berger and Molina, 2005; George

and McCulloch, 1997), and the corresponding Bayes factors lead to a correct conclusion 99-100%

of the time. The independent priors seem more robust to collinearity and they never discard all

the correlated covariates. The underperformance of the g-priors could be partly explained by their

somewhat inaccurate representation of prior belief in the scenarios under consideration. This issue

is discussed in more details in Section 4.
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q = 2 q = 3 q = 4
Prior FN FP Null BF FN FP Null BF FN FP Null BF
g-prior 0.36 0.06 0.00 0.99 0.78 0.05 0.43 1.00 0.86 0.05 0.51 1.00

Zellner-Siow 0.21 0.08 0.00 0.99 0.77 0.06 0.38 1.00 0.87 0.04 0.54 1.00
Independent normal 0.01 0.06 0.00 0.99 0.14 0.05 0.00 1.00 0.15 0.05 0.00 1.00

Independent t 0.01 0.05 0.00 0.99 0.11 0.05 0.00 0.99 0.14 0.04 0.00 1.00

Table 1: Simulation study with p = 10 covariates, of which q correlated covariates are included in
the “true” model as signals, and (p− q) uncorrelated covariates denote noise.

3.2 Unimportant Correlated Covariates

In this simulation study we consider the same values of n, p, and q, and generate the design matrix

as before. We now set the regression coefficients for the q correlated covariates at zero, and the

remaining (p− q) coefficients at one.

The results based on repeating the procedure 100 times are presented in Table 2. The false

negative rates are similar across priors. This is expected because these are affected by the un-

correlated covariates only. The false positive rates are generally small and similar across priors,

so the MPM does not seem to have any problems in discarding correlated covariates that are not

associated with the response variable. The Bayes factors based on joint inclusion indicators lead

to a correct conclusion 99-100% of the time.

q = 2 q = 3 q = 4
Prior FN FP BF FN FP BF FN FP BF

g-prior 0.15 0.03 0.00 0.16 0.02 0.01 0.15 0.03 0.00
Zellner-Siow 0.11 0.07 0.00 0.11 0.06 0.01 0.10 0.07 0.00

Independent normal 0.14 0.08 0.00 0.16 0.03 0.00 0.14 0.00 0.00
Independent t 0.16 0.07 0.00 0.17 0.02 0.00 0.15 0.01 0.00

Table 2: Simulation study with p = 10 covariates, of which q correlated noise variables are not
included in the “true” model, and (p− q) uncorrelated covariates are included in the “true” model
as signals.

4 Zellner’s g-prior and Collinearity

In the previous simulation studies and real data analysis Zellner’s g-prior (Zellner, 1986) has been

shown to be most affected. In this Section we explore this prior further with empirical and theoret-

ical toy examples to get a better understanding of its behavior under collinearity. Zellner’s g-prior

8



and its variants are widely used for the model specific parameters in Bayesian variable selection. A

key reason for the popularity is perhaps its computational tractability in high-dimensional model

spaces. The choice of g is critical in model selection and a variety of choices have been proposed in

the literature. In this Section, we focus on the unit information g-prior with g = n, in the presence

of strong collinearity. Letting X denote the design matrix under the full model, we assume that the

columns of X have been centered to have mean 0 and scaled so that the norm of each column is
√
n,

as in Ghosh and Clyde (2011). For the standardized design matrix X′X is n times the observed

correlation matrix of the predictor variables. Under model γ the g-prior is given by:

p(β0, φ | γ) ∝ 1/φ

βγ | γ, φ ∼ N

(

0,
g

φ
(Xγ

′Xγ)
−1

)

. (3)

We first explain why the information contained in this prior is in strong disagreement with the

data, for the scenarios considered in Section 3. For simplicity of exposition we take a small example

with p = 2, and denote the sample correlation coefficient between the two covariates by r. For

given g and φ, the prior variance of βγ in the full model γ = (1, 1)′ is given by

g

φ

(

X′
γ
Xγ

)−1
=

g

φ






n







1 r

r 1













−1

=
g

nφ(1− r2)







1 −r

−r 1






.

When r ≈ 1, the prior correlation coefficient between β1 and β2 is −r ≈ −1. Thus the g-prior

strongly encourages the coefficients to move in opposite directions when the covariates are strongly

positively correlated. Krishna et al. (2009) have given similar arguments for not preferring the

g-prior in high collinearity situations. An effect of a prior distribution may be better understood

by examining the posterior distribution that arises under it, which is studied in the rest of this

Section.

Let Ŷγ = 1β̂0 + Xγβ̂γ , where β̂0 = Ȳ =
∑n

i=1 Yi/n and β̂γ = (Xγ
′Xγ)

−1
Xγ

′Y are the

ordinary least squares estimates of β0 and βγ . Let the regression sum of squares for model γ

be SSRγ =
∑n

i=1 (Ŷγi − Ȳ )
2
and the total sum of squares be SST =

∑n
i=1 (Yi − Ȳ )

2
. Then the
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coefficient of determination (see for example, Christensen (2002) Section 14.1.1) for model γ is

R2
γ
= SSRγ/SST. When γ is the null model with only the intercept term, Ŷγ = 1Ȳ , thus its

SSRγ = 0 and R2
γ
= 0. The marginal likelihood for the g-prior can be calculated analytically as:

p(Y | γ) ∝ (1 + g)
n−pγ−1

2 {1 + g(1−R2
γ
)}−

(n−1)
2 , (4)

where pγ =
∑p

j=1 γj denotes the number of covariates in model γ (excluding the intercept), and

the constant of proportionality does not depend on γ (see Section 2.1 equation (5) of Liang et al.

(2008)). We assume throughout that we have a discrete uniform prior for the model space so that

p(γ) = 1/2p for all models. For exploration of non-enumerable model spaces MCMC may be used

such that p(γ | Y) is the target distribution of the Markov chain. George and McCulloch (1997)

discuss fast updating schemes for MCMC sampling with the g-prior.

Next, we consider a small simulation study for p = 3 with strong collinearity among the covari-

ates, so that we can explicitly list each of the 23 models along with their R2 values and posterior

probabilities, to demonstrate the problem associated with severe collinearity empirically. In later

subsections we consider some toy examples to explain this problem theoretically and hence obtain

a better understanding of the properties of the MPM. For our theoretical examples, we will deal

with finite and large n under conditions of severe collinearity. Our results complement the results

of Fernández et al. (2001) who showed that model selection consistency holds for the g-prior with

g = n. Their result implies that under appropriate assumptions, p(γ|Y) will converge to 1 in

probability, if γ ∈ Γ is the “true” model. Our simulations and theoretical calculations demonstrate

that under severe collinearity the posterior distribution over models may become multimodal and

very large values of n may be needed for consistency to come into effect.

4.1 Simulated data for p = 3

We generate the covariates such that they are all highly correlated with each other, as follows. We

sample a vector of n standard normal variables, say z, and then generate each of the covariates

by adding another vector of n independent normal variables with mean 0 and standard deviation

0.05 to z. This results in pairwise correlations of about 0.997 among all the covariates. We set
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the intercept and the regression coefficients for all the covariates equal to one, and generate the

response variable as in model (1) with φ = 1/4. We look at a range of moderate to extremely large

sample sizes in Tables 3 and 4.

R2

γ
p(γ | Y)

γ n = 25 n = 102 n = 103 n = 104 n = 105 n = 25 n = 102 n = 103 n = 104 n = 105

(0, 0, 0)′ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0, 0, 1)′ 0.736 0.582 0.666 0.691 0.691 0.274 0.144 0.548 0.000 0.000
(0, 1, 0)′ 0.734 0.589 0.665 0.691 0.691 0.253 0.329 0.086 0.018 0.000
(0, 1, 1)′ 0.736 0.590 0.666 0.692 0.692 0.054 0.035 0.026 0.909 0.000
(1, 0, 0)′ 0.738 0.591 0.665 0.690 0.691 0.293 0.398 0.282 0.000 0.000
(1, 0, 1)′ 0.738 0.592 0.666 0.691 0.692 0.058 0.047 0.040 0.000 0.000
(1, 1, 0)′ 0.738 0.591 0.666 0.692 0.692 0.057 0.041 0.017 0.046 0.000
(1, 1, 1)′ 0.738 0.594 0.667 0.692 0.692 0.011 0.006 0.001 0.026 1.000

Table 3: Simulation study for p = 3, to demonstrate the effect of collinearity on posterior proba-
bilities of models; the posterior probabilities of the top 3 models have been highlighted.

Table 3 shows that high positive correlations among the important covariates lead to similar R2

values across all non-null models. For the g-prior this translates into high posterior probabilities for

the single variable models, in spite of the full model being the “true” model. The full model does

not have a high posterior probability even for n = 104, finally the posterior consistency comes into

play when n is as large as 105. Note that for each sample size n, a single dataset was generated,

and the same data generating model was used for all n. The differences in R2 values for a given

model across different sample sizes is due to sampling variability, and it stabilizes to a common

value once n starts getting large. For n ≥ 1, 000, one model usually receives a large chunk of the

posterior probability, but under repeated sampling there is considerable variability regarding which

model gets the large mass.

Table 4 studies the corresponding posterior inclusion probabilities of covariates. We find that

for n = 25 and n = 100, the marginal inclusion probabilities are all smaller than 0.5, so the MPM

will be the null model. However, for all values of n, the joint inclusion probability that at least one

of the correlated covariates is included in the model is (1− p((0, 0, 0)′ | Y)) = 1. This suggests that

the joint inclusion probabilities are still effective measures of importance of covariates even when

the MPM or the HPM are adversely affected by collinearity.

Even though the HPM is not the “true” model, it may still be effective for predictions in this
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high collinearity situation. When the main goal is prediction, whether the “true” model has been

selected or not may be irrelevant. However, sometimes it may be of practical interest to find the

covariates associated with the response variable, as in a genetic association study. In this case it

would be desirable to select the “true” model for a better understanding of the underlying biological

process, and both the HPM and the MPM could fail to do so under high collinearity.

n = 25 n = 102 n = 103 n = 104 n = 105

p(γ1 = 1 | Y) 0.419 0.492 0.341 0.072 1.000
p(γ2 = 1 | Y) 0.375 0.411 0.130 1.000 1.000
p(γ3 = 1 | Y) 0.397 0.232 0.615 0.936 1.000

Table 4: Simulation study for p = 3, to demonstrate the effect of collinearity on posterior marginal
inclusion probabilities of covariates.

In the following subsections we first introduce a few assumptions and propositions and then conduct

a theoretical study of the p = 2 case followed by that for the general p case.

4.2 Assumptions About R2 and Collinearity

First note that for the null model γ = (0, 0, . . . , 0)′, we have R2
γ
= 0, by definition. To deal with

random R2
γ
for non-null models, we make the following assumption:

Assumption 1. Assume that the “true” model is the full model and that 0 < δ1 < R2
γ
< δ2 < 1,

for all sample size n and for all non-null models γ ∈ Γ− {(0, 0, . . . , 0)′}, with probability 1.

Proposition 1. If Assumption 1 holds, then for given ǫ > 0, and for g = n sufficiently large, the

Bayes factor for comparing γ = (0, 0, . . . , 0)′ and γ = (1, 0, . . . , 0)′ can be made smaller than ǫ,

with probability 1.

The proof is given in Appendix A. This result implies that the Bayes factor,

BF(γ = (0, 0, . . . , 0)′ : γ = (1, 0, . . . , 0)′) ≈ 0, (5)

with probability 1, if the specified conditions hold.

For a discrete uniform prior for the model space, that is p(γ) = 1/2p for all models γ ∈ Γ, the
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posterior probability of any model γ may be expressed entirely in terms of Bayes factors as:

p(γ | Y) =
p(Y | γ)(1/2p)

∑

γ∈Γ p(Y | γ)(1/2p) =
p(Y | γ)

∑

γ∈Γ p(Y | γ) =
p(Y | γ)/p(Y | γ⋆)

∑

γ∈Γ p(Y | γ)/p(Y | γ⋆)
=

BF(γ : γ⋆)
∑

γ∈Γ BF(γ : γ⋆)
,

(6)

where γ⋆ ∈ Γ (Berger and Molina, 2005). Taking γ = (0, 0, . . . , 0)′ and γ⋆ = (1, 0, . . . , 0)′ in (6),

and using (5), for large enough n we have the following with probability 1,

p(γ = (0, 0, . . . , 0)′ | Y) ≈ 0. (7)

As the null model receives negligible posterior probability we may omit it when computing the

normalizing constant of p(γ | Y), that is we may compute the posterior probabilities of non-

null models by re-normalizing over the set Γ − {(0, 0, . . . , 0)′} instead of Γ. We provide a formal

justification of this approximation in Appendix B.

We now make an assumption about strong collinearity among the covariates, so that R2
γ
for all

non-null models γ ∈ Γ− {(0, 0, . . . , 0)′} are sufficiently close to each other, with probability 1.

Assumption 2. Assume that the p covariates are highly correlated with each other such that the

ratio

{

1+n(1−R2
γ)

1+n(1−R2
γ′ )

}−
(n−1)

2

can be taken to be approximately 1, for any pair of distinct non-null

models γ and γ ′, with probability 1.

The above assumption is not made in an asymptotic sense, instead it assumes that the collinear-

ity is strong enough for the condition to hold over a range of large n, but not necessarily as n → ∞.

One would usually expect a group or multiple groups of correlated covariates to occur, instead

of all p of them being highly correlated. This simplified assumption is made for exploring the

behavior theoretically, but the phenomenon holds under more general conditions. This has been

already demonstrated in the simulation studies in Section 3, where a subset (of varying size) of the

p covariates was assumed to be correlated rather than all of them. Our empirical results suggest

that this assumption will usually not hold when the correlations are smaller than 0.9 or so. Thus

it will probably not occur frequently, but cannot be ruled out either, as evident from the real data

analysis in Section 2. We next study the posterior distribution of 22 models for an example with
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p = 2 highly correlated covariates and extend the results to the general p scenario in the following

subsection.

4.3 Collinearity Example for p = 2

Under Assumptions 1 and 2 and the discrete uniform prior for the model space, p(γ) = 1
22
, γ ∈ Γ,

the posterior probabilities of the 22 models can be approximated as follows, with probability 1:

p(γ = (0, 0)′ | Y) ≈ 0, p(γ = (0, 1)′ | Y) ≈ 1

2
,

p(γ = (1, 0)′ | Y) ≈ 1

2
, p(γ = (1, 1)′ | Y) ≈ 0. (8)

The detailed calculations are given in Appendix C. The calculations in (8) have the following

implications with probability 1. First, the posterior is approximately bimodal with modes at the

one-variable models, γ = (0, 1)′ and γ = (1, 0)′. Second, as each mode receives approximately 0.5

posterior probability, this implies that the marginal posterior inclusion probabilities p(γ1 = 1 | Y)

and p(γ2 = 1 | Y) would also be close to 0.5. Third, the MPM picks all variables whose marginal

inclusion probabilities are greater than or equal to 0.5, so in this case it is likely that the MPM

will include at least one of the two important covariates, which happened in all our simulations in

Section 3.

Finally note that the prior probability that at least one of the important covariates is included

is p(γ1 = 1 or γ2 = 1) = 1 − p(γ = (0, 0)′) = 1 − (1/2)2 = 3/4, under the discrete uniform

prior for the model space. The posterior probability that at least one of the important covariates

is included is P (γ1 = 1 or γ2 = 1 | Y) = 1 − p(γ = (0, 0)′ | Y) ≈ 1, by (8). Let H0 denote

γ = (0, 0)′ and HA denote its complement, that is HA denotes γ1 = 1 or γ2 = 1. Then the prior

odds P (HA)/P(H0) = (3/4)/(1/4) = 3 and the posterior odds P (HA | Y)/P(H0 | Y) is expected

to be very large, because P (HA | Y) ≈ 1 and P (H0 | Y) ≈ 0, by (8). Then it is clear from the

calculations of the prior and posterior odds that the Bayes factor BF(HA : H0) =
P(HA|Y)/P(H0|Y)

P(HA)/P(H0)

will be very large with probability 1, under the above assumptions.
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4.4 Collinearity Example for General p

Consider a similar set up with p highly correlated covariates and γ = (1, 1, . . . , 1)′ as the “true”

model. Under Assumptions 1 and 2 the following results hold with probability 1, which is implicitly

assumed throughout this Section. For large n, under Assumption 1, the null model has nearly zero

posterior probability by (7), so it is not considered in the calculation of the normalizing constant for

posterior probabilities of models as before. Under Assumption 2, taking g = n in (4), all (2p−1) non-

null models have the term {1 + n(1 − R2
γ
)}−

(n−1)
2 (approximately) in common. Ignoring common

terms the marginal likelihood for any model of dimension pγ is approximately proportional to

(1 + n)
n−pγ−1

2 . Given n, this term decreases as pγ increases, so the models with pγ = 1 will have

the highest posterior probability, and the posterior will have p modes at each of the one-dimensional

models. The posterior inclusion probability for the jth covariate is

p(γj = 1 | Y) =

∑

γ∈Γ:γj=1 p(Y | γ)
∑

γ∈Γ p(Y | γ) ≈
∑

γ∈Γ:γj=1 p(Y | γ)
∑

γ∈Γ−{(0,0,...,0)′} p(Y | γ) ≈
∑p

pγ=1

(

p−1
pγ−1

)

(1 + n)
n−pγ−1

2

∑p
pγ=1

(

p
pγ

)

(1 + n)
n−pγ−1

2

, (9)

where the last approximation is due to Assumption 2 regarding collinearity. The expression in

(9) follows the fact that i) all pγ-dimensional models have the marginal likelihood proportional to

(1 + n)
n−pγ−1

2 approximately (using Assumption 2 in (4)), ii) there are altogether
(

p
pγ

)

such models,

and iii) exactly
(

p−1
pγ−1

)

of these have γj = 1. Dividing the numerator and denominator of (9) by

(1 + n)
n−2
2 we have

p(γj = 1 | Y) ≈
1 +

∑p
pγ=2

(

p−1
pγ−1

)

(1 + n)−
(pγ−1)

2

p+
∑p

pγ=2

(

p
pγ

)

(1 + n)−
(pγ−1)

2

≈ 1

p
,

where the last approximation follows for fixed p and sufficiently large n, as the terms in the sum

over pγ (from 2 to p) involve negative powers of (1 + n). This result suggests that the MPM will

have greater problems due to collinearity for p ≥ 3 compared to p = 2.

Let H0 : γ = (0, 0, . . . , 0)′ and HA: complement of H0. Because the prior odds P (HA)/P (H0) =

(2p−1) is fixed (for fixed p), and the posterior odds is large for sufficiently large n, the Bayes factor

BF(HA : H0) will be large. This useful result suggests that while marginal inclusion probabilities
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(marginal Bayes factors) may give misleading conclusions about the importance of covariates, the

joint inclusion probabilities (joint Bayes factors) would correctly indicate that at least one of the

covariates should be included in the model. These results are in agreement with the simulation

studies in Section 3 and provide a theoretical justification for them.

5 Discussion

Based on the empirical results it seems preferable to use scale mixtures of independent priors for

design matrices with high collinearity instead of scale mixtures of g-priors. The MPM is easy to

understand, straightforward to estimate, and it generally has good performance except in cases of

severe collinearity. Thus we recommend a two-step procedure: using the MPM for variable selection

as a first step, followed by an inspection of joint inclusion probabilities and Bayes factors for groups

of correlated covariates, as a second step. For complex correlation structures it may be desirable to

incorporate that information in the prior. Krishna et al. (2009) proposed a new powered correlation

prior for the regression coefficients and a new model space prior with this objective. The posterior

computation for their prior will be very demanding for high dimensions compared to some of the

other standard priors like independent normal and t priors used in this paper. Thus development

of priors along the lines of Krishna et al. (2009) that scale well with the dimension of the model

space is a promising direction for future research.

An interesting question was raised by the reviewer: should we label all the covariates appearing

in the “true” model as important even in cases of high collinearity. The definition of important

covariates largely depends on the goal of the study. For example, in genetic association studies

there could be some highly correlated genetic markers, all associated with the response variable,

and the goal of the study is often identifying such markers. In this case they would all be deemed

important. In recent years statisticians have focused on this aspect of variable selection with corre-

lated covariates, where it is desired that correlated covariates are to be simultaneously included in

(or excluded from) a model as a group. The elastic net by Zou and Hastie (2005) is a regularization

method with such grouping effect. Bayesians have formulated priors that will induce the grouping

effect (Krishna et al., 2009; Liu et al., 2014). In some of these papers the authors have shown that
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including correlated covariates in a group with appropriate regularization or shrinkage rules may

improve predictions.

If the goal is to uncover the model with best predictive performance, then including highly

correlated covariates simultaneously in the model may not necessarily lead to the best predictive

model. The MPM is the optimal predictive model under squared error loss, and certain conditions.

For the optimality conditions to be satisfied, the design matrix has to be orthogonal in the all

submodels scenario, and certain types of priors must be used. In general, the MPM does quite well

under non-orthogonality too, but may not do as well under high collinearity. One possibility would

be to find the model with best predictive ability, measured by expected squared error loss, with

expectation taken with respect to the posterior predictive distribution (see for example, Lemma

1 of Barbieri and Berger (2004)). This would be feasible for conjugate priors and small model

spaces that can be enumerated. For large model spaces one could use the same principle to find

the best model among the set of sampled models. However, for general priors, when the posterior

means of the regression coefficients are not available in closed form, the problem would become

computationally challenging. Thus for genuine applications, it would be good practice to report

out of sample predictive performance of both the HPM and the MPM. When finding the best

predictive model in the list of all/sampled models is computationally feasible it would be desirable

to report it as well.
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Appendix A: Proof of Proposition 1

Proof. To simplify the notation let R2
γ
= R2 for γ = (1, 0, . . . , 0)′. Then putting g = n and using

the expression for marginal likelihood of the g-prior given in (4) we have,

BF(γ = (0, 0, . . . , 0)′ : γ = (1, 0, . . . , 0)′) = p(Y | γ = (0, 0, . . . , 0)′)/p(Y | γ = (1, 0, . . . , 0)′)

=
1

(1 + n)(n−2)/2{1 + n(1−R2)}−(n−1)/2

=
1

(1 + n)(n−2)/2
[

{1+n(1−R2)}(1+n)
(1+n)

]−(n−1)/2

=
1

(1 + n)(n−2)/2
(

1+n−nR2

1+n

)−(n−1)/2
(1 + n)−(n−1)/2

=
1

(1 + n)(n−2−n+1)/2
(

1− n
1+nR

2
)−(n−1)/2

=
1

(1 + n)−1/2
(

1− n
1+nR

2
)−(n−1)/2

= (1 + n)1/2
(

1− n

1 + n
R2

)(n−1)/2

(10)

Taking the logarithm of (10) the following result holds with probability 1, by Assumption 1:

log(BF(γ = (0, 0, . . . , 0)′ : γ = (1, 0, . . . , 0)′)) = log

(

(1 + n)1/2
(

1− n

1 + n
R2

)(n−1)/2
)

=
1

2
log(1 + n) +

(n− 1)

2
log(1− n

n+ 1
R2)

<
1

2
log(1 + n) +

(n− 1)

2
log(1− n

n+ 1
δ1) (11)

As n goes to infinity, the first term in (11) goes to ∞ at a logarithmic rate in n. Logarithm is a

continuous function so log(1− n
n+1δ1) goes to log(1− δ1) as n goes to infinity. Because 0 < δ1 < 1,

we have log(1 − δ1) < 0. This implies that the second term in (11) goes to −∞ at a polynomial
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rate in n, of degree 1. Thus, as n → ∞, with probability 1,

log(BF(γ = (0, 0, . . . , 0)′ : γ = (1, 0, . . . , 0)′)) → −∞, or

BF(γ = (0, 0, . . . , 0)′ : γ = (1, 0, . . . , 0)′) → 0. (12)

From (12) it follows that for sufficiently large n, we can make BF(γ = (0, 0, . . . , 0)′ : γ =

(1, 0, . . . , 0)′) < ǫ, for given ǫ > 0, with probability 1. This completes the proof.

Note that the above proof is based on an argument where we consider the limit as n → ∞.

However, for other results concerning collinearity, we assume that n is large but finite. Thus we

avoid the use of limiting operations in the main body of the article to avoid giving the reader an

impression that we are doing asymptotics.

Appendix B: Justification for Omission of the Null Model for Com-

puting the Normalizing Constant
∑

γ∈Γ p(Y | γ)

We first establish the following lemma. This shows that for computing a finite sum of positive

quantities, if one of the quantities is negligible compared to another, then the sum can be computed

accurately even if the quantity with negligible contribution is omitted from the sum.

Lemma 1. Consider ain > 0, i = 1, 2, . . .m. If a1n
a2n

→ 0 as n → ∞ then
∑m

i=2 ain∑m
i=1 ain

→ 1.

Proof.

lim
n→∞

∑m
i=2 ain

∑m
i=1 ain

= lim
n→∞

∑m
i=2 ain/a2n

∑m
i=1 ain/a2n

= lim
n→∞

∑m
i=2 ain/a2n

(a1n/a2n) +
∑m

i=2 ain/a2n

=
limn→∞

∑m
i=2 ain/a2n

limn→∞(a1n/a2n) + limn→∞
∑m

i=2 ain/a2n

=
limn→∞

∑m
i=2 ain/a2n

0 + limn→∞
∑m

i=2 ain/a2n

= 1
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Corollary 1. If Assumption 1 holds, then given η > 0, however small, for sufficiently large n, we

can make
(

1−
∑

γ∈Γ−{(0,0,...,0)′} p(Y|γ)
∑

γ∈Γ p(Y|γ)

)

< η, with probability 1.

Proof. We have p(Y | γ) > 0, γ ∈ Γ and p(Y|γ=(0,0,...,0)′)
p(Y|γ=(1,0,...,0)′) → 0 as n → ∞, with probability 1, by

(12). Then as n → ∞ we have the following, with probability 1, by Lemma 1:

∑

γ∈Γ−{(0,0,...,0)′} p(Y | γ)
∑

γ∈Γ p(Y | γ) → 1.

The proof follows immediately.

Appendix C: Calculation of Posterior Probabilities of all 22 Models

for p = 2

The posterior probability of the null model was shown to be approximately zero in (7). We derive

the posterior probabilities of the non-null models under Assumptions 1 and 2 here. For any non-null

model γ ∈ Γ− {(0, 0)′},

p(γ | Y) =
p(γ)p(Y | γ)

∑

γ∈Γ p(γ)p(Y | γ)

=
(1/22)p(Y | γ)

∑

γ∈Γ(1/2
2)p(Y | γ) (because p(γ) = 1/22 for γ ∈ Γ)

=
p(Y | γ)

∑

γ∈Γ p(Y | γ)

≈ p(Y | γ)
∑

γ∈Γ−{(0,0)′} p(Y | γ) , (13)

with probability 1. The last approximation in (13) follows from Corollary 1 in Appendix B.

We will use the expression in (13) to derive the posterior probabilities. First note that under

Assumption 2 the term {1 + n(1−R2
γ
)}−

(n−1)
2 in the expression of marginal likelihood p(Y | γ) in

(4) is approximately the same across all non-null models with probability 1. Thus this term does

not have to be taken into account when computing the posterior probabilities by (13). Then by
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(4), (13), and substituting g = n we have with probability 1,

p(γ = (0, 1)′ | Y) ≈ (1 + n)(n−1−1)/2

(1 + n)(n−1−1)/2 + (1 + n)(n−1−1)/2 + (1 + n)(n−2−1)/2
. (14)

Dividing the numerator and denominator of the right hand side of (14) by (1 + n)(n−2)/2,

p(γ = (0, 1)′ | Y) ≈ 1

2 + (1 + n)−1/2

≈ 1

2
,

for large enough n, with probability 1.

Under Assumption 2, we note that p(γ = (1, 0)′ | Y) would have an identical expression as

p(γ = (0, 1)′ | Y). Hence

p(γ = (1, 0)′ | Y) ≈ 1

2
,

for large enough n, with probability 1.

We finally derive p(γ = (1, 1)′ | Y) in a similar manner as follows,

p(γ = (1, 1)′ | Y) ≈ (1 + n)(n−2−1)/2

(1 + n)(n−1−1)/2 + (1 + n)(n−1−1)/2 + (1 + n)(n−2−1)/2

≈ 1

2(1 + n)1/2 + 1

≈ 0,

for large enough n, with probability 1.

References

Barbieri, M. and Berger, J. (2004). Optimal predictive model selection. Annals of Statistics 32, 3,

870–897.

Berger, J. O. and Molina, G. (2005). Posterior model probabilities via path-based pairwise priors.

21



Statistica Neerlandica 59, 3–15.

Brown, P. J., Fearn, F., and Vannucci, M. (2001). Bayesian wavelet regression on curves with ap-

plication to a spectroscopic calibration problem. Journal of the American Statistical Association

96, 454, 398–408.

Christensen, R. (2002). Plane Answers to Complex Questions. Springer, 3rd edn.

Clyde, M. A., Ghosh, J., and Littman, M. L. (2011). Bayesian adaptive sampling for variable

selection and model averaging. Journal of Computational and Graphical Statistics 20, 1, 80–101.

Fernández, C., Ley, E., and Steel, M. F. (2001). Benchmark priors for Bayesian model averaging.

Journal of Econometrics 100, 381–427.

George, E. I. and McCulloch, R. E. (1997). Approaches for Bayesian variable selection. Statistica

Sinica 7, 339–374.

Ghosh, J. and Clyde, M. A. (2011). Rao-Blackwellization for Bayesian variable selection and model

averaging in linear and binary regression: A novel data augmentation approach. Journal of the

American Statistical Association 106, 495, 1041–1052.

Ghosh, J. and Reiter, J. P. (2013). Secure Bayesian model averaging for horizontally partitioned

data. Statistics and Computing 23, 311–322.

Kraemer, N. and Boulesteix, A.-L. (2012). ppls: Penalized Partial Least Squares. R package version

1.05.

Krishna, A., Bondell, H. D., and Ghosh, S. K. (2009). Bayesian variable selection using an adaptive

powered correlation prior. Journal of Statistical Planning and Inference 139, 8, 2665–2674.

Liang, F., Paulo, R., Molina, G., Clyde, M., and Berger, J. (2008). Mixtures of g-priors for Bayesian

variable selection. Journal of the American Statistical Association 103, 410–423.

Liu, F., Chakraborty, S., Li, F., Liu, Y., and Lozano, A. C. (2014). Bayesian regularization via

graph laplacian. Bayesian Analysis 9, 2, 449–474.

22



Zellner, A. (1986). On assessing prior distributions and Bayesian regression analysis with g-prior

distributions. In Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de

Finetti, 233–243. North-Holland/Elsevier.

Zellner, A. and Siow, A. (1980). Posterior odds ratios for selected regression hypotheses. In Bayesian

Statistics: Proceedings of the First International Meeting held in Valencia (Spain), 585–603.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of

the Royal Statistical Society, Series B 67, 2, 301–320.

23


